TECHNICAL INFORMATION

Specific Gravity Correction Factors

Gas/Liquid Separators

Temperature Correction Factor

Temp °F	Factor
-20	0.904
-10	0.917
0	0.929
10	0.941
20	0.953
30	0.965
40	0.977
50	0.989
60	1.000
70	1.012
80	1.023
90	1.034
95	1.040
100	1.046
105	1.051
110	1.057
120	1.068
130	1.079
140	1.090
150	1.101
160	1.112
170	1.121
180	1.133
190	1.143
200	1.154
250	1.206
300	1.256
400	1.353
500	1.445
550	1.490
600	1.533
700	1.618
800	1.701
900	1.780
1000	1.858

GAS	Symbol	M.W.	G	Fg
Hydrogen	H ₂	2.0	0.069	0.344
Helium	He	4.0	0.138	0.452
Synthesis	75% H ₂ 25% N ₂	8.5	0.295	0.611
Coke Oven	-	11.0	0.379	0.679
*Methane	CH_4	16.0	0.551	0.788
Ammonia	NH ₃	17.0	0.586	0.808
Steam (Water Vapor)	H ₂ 0	18.0	0.621	0.826
*Natural Gas	75% CH ₄ 25% N ₂	-	-	-
Acetylene	C_2H_2	26.0	0.897	0.957
Nitrogen	N ₂	28.0	0.950	0.986
Carbon Monoxide	CO	28.0	0.950	0.986
Air	-	29.0	1.00	1.00
Flue Gas	81%N ₂ 19%CO ₂	31.0	1.08	1.027
Oxygen	02	32.0	1.10	1.039
Argon	А	39.9	1.38	1.136
Propane	C ₃ H ₈	44.1	1.52	1.182
*Carbon Dioxide	CO ₂	44.0	1.52	1.181
Nitrous Oxide	N ₂ 0	44.0	1.52	1.181
Butadiene	C_4H_6	54.1	1.86	1.284
Sulfur Dioxide	SO ₂	64.1	2.21	1.374
Chlorine	Cl ₂	70.9	2.45	1.431
Freon 12	CCI ₂ F ₂	120.9	4.17	1.770

* For applications involving gases (above 500 psi at 200 °F) so marked, contact Eaton to determine whether there is an additional correction factor for compressibility 1 psi = 2.036" Hg 1" Hg = .4912 psi 1 psi = 27.71" H₂O 1" H₂O = .03613 psi

The Eaton Air Flow Chart on the next page is based on SCFM (cubic feet per minute of air measured at standard conditions of 14.7 psia and 60 °F). If any of the operating conditions are varied from the above, then correction factors must be applied.

To use the Air Flow Chart for applications involving other gases or other than standard conditions, the following equation must be solved for Q_c:

$$Q_{c} = Q_{sg} \times F_{g} \times F_{t}$$

In the event that Q_S is not provided in the proper form, any of the following equations may be used to arrive at the correct flow rate to insert in the above equation:

 F_q = Correction factor for specific gravity F_t = Correction factor for temperature (See table on the inside page) G = Specific gravity MMSCFD= Million standard cubic feet per day MW = Molecular weight P_a = Pressure (psia) at which volume is measured $Q_a = Rate of flow$ standard cubic feet per minute (ACFM) $Q_c = Rate of flow$ standard cubic feet per minute of equivalent air Q_{sg} = Rate of flowstandard cubic feet per minute T = Operating temp. (°F) = Temperature (°F) at Та which volume is measured W = Rate of flowpounds per hour $Q_{sg} = \frac{6.3 \times W}{MW}$

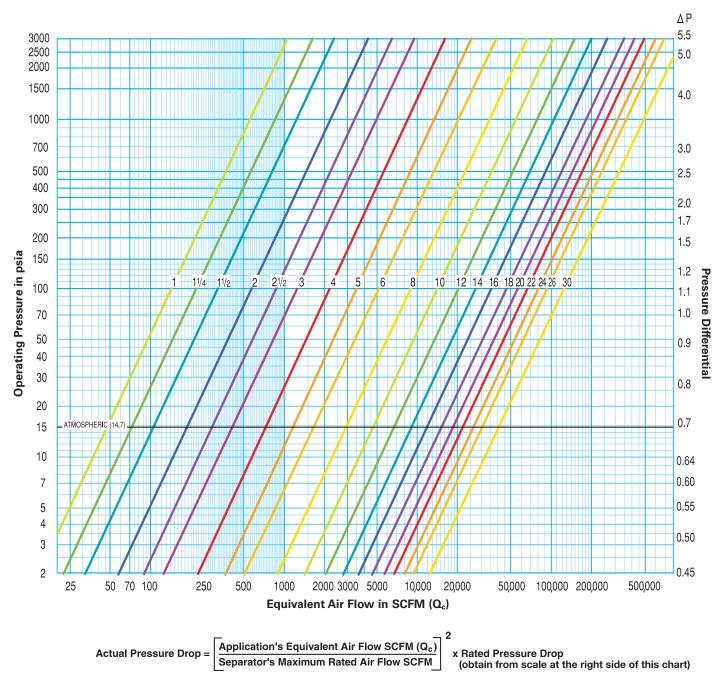
Symbol Key

$$Q_{sg} = \frac{35.7 \times Q_a \times P_a}{460 + T_a}$$

 Q_{sq} (air only) = .218 \times W

$$Q_{sg} = \frac{MMSCFD}{1440}$$

W = (pounds mols/hour) \times MW

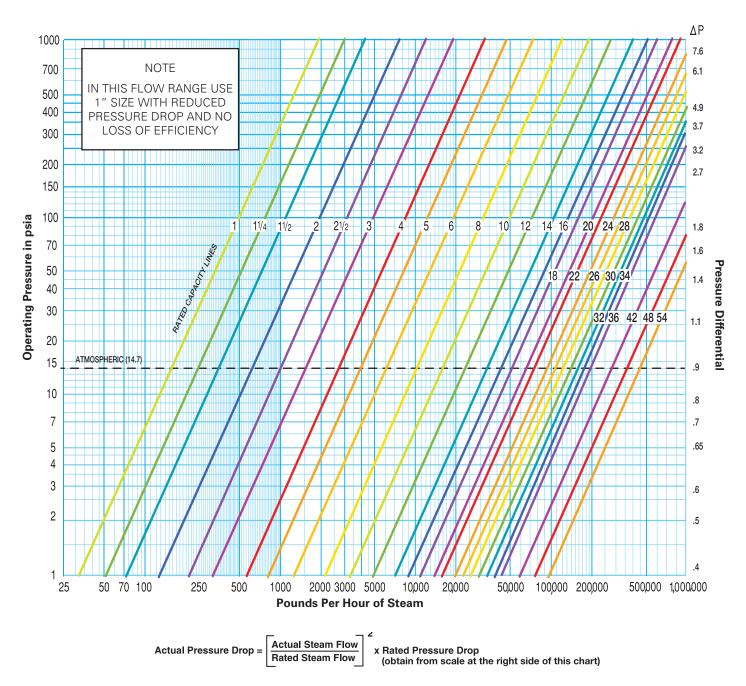


Brisbane, Australia www.monarchindustrial.com.au www.monarchasiapacific.com.au

TECHNICAL INFORMATION Gas/Liquid Separators

Air Flow Capacity Chart

The values on the chart represent maximum recommended Air Flow In Standard Cubic Feet Per Minute through standard separators. The chart is based on SCFM (cubic feet per minute of air measured at standard conditions of 14.7 psia and 60 °F). If any of the operating conditions are varied from these, consult Eaton.



Brisbane, Australia www.monarchindustrial.com.au www.monarchasiapacific.com.au

Saturated Steam Flow Capacity Chart

The values on the chart represent maximum recommended saturated Steam Flow in Pounds per Hour through standard separators. The chart is based on SCFM (cubic feet per minute

of air measured at standard conditions of 14.7 psia and 60 °F). If any of the operating conditions are varied from these, consult Eaton.

Brisbane, Australia www.monarchindustrial.com.au www.monarchasiapacific.com.au

ENGINEERING SPECIFICATIONS Gas/Liquid Separators

Type T, ST or STH **Gas/Liquid Separators**

All gas/liquid separators shall be constructed of (iron, carbon steel, stainless steel or other alloy) with threaded,

flanged, or socket weld connections for pipe size____. Construction shall be (cast, fabricated). Separators will remove 99% of entrained liquid or particulate matter 10 micron in size or larger when properly installed. Re-entrainment of separated material will be prevented by a Vortex Containment Plate. Options required are (integral trap, trap heating element, ASME UM or U Code Stamp, water gauge tap, thermometer tap, larger drain size). Separators shall be Eaton Type (T, ST, STH).

Type 30L Series Gas/Liquid Separators

All gas/liquid separators shall be of fabricated (carbon steel, stainless steel or other alloy) with flanged connections for pipe size Separators will remove 99% of entrained liquid or particulate matter 10 micron in size or larger when properly installed. Separator design shall incorporate a Cenpellar™ for efficient operation. Re-entrainment of separated material will be prevented by a Vortex Containment Plate. Options required are (oversize inlet connections, reduced size inlet and outlet connections, specified flow pattern, integral sump, ASME code stamp). Separators shall be Eaton Type 30L Series.

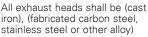
Type 31L-ST Gas/Liquid Separators

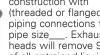
tion with (threaded or flanged) piping connections for pipe size Separators will remove 99% of all entrained liquid or particulate matter 10 micron in size or larger when properly installed. Separators to incorporate a Cenpellar™ for efficient operation and a Vortex Containment Plate to prevent re-entrainment of separated material. All separators shall have an integral trap to save space and shall be capable of automatically ejecting the condensate at predetermined levels without loss of line pressure. Required options include (trap heater, ASME Code Stamp). Separators shall be Eaton Type 31L-ST.

All gas liquid separators shall be fabricated (carbon steel or other alloy) construction with flanged

connections for pipe size Separators will remove 99% of all entrained liquid or particulate matter 10 micron in size or larger when properly installed. Separators shall have a two-stage design for separating large volumes of liquid and be capable of handling liquid slugs. Re-entrainment of separated material will be prevented by a Vortex Containment Plate. All separators will have an ASME Code Stamp. Required options are (support stand, multiple inlets/ outlets). Separators shall be Eaton Type 10-R Series standard or compact.

Type CLC Coalescer/ Separators




shall be of fabricated (carbon steel or other alloy) construction with flanged connections for pipe _. Separators will have a size_ two-stage coalescer/separator design and remove 99% of all liquid and particulate matter 4 micron in size or larger when properly installed. Separators to incorporate a de-mister pad and a Cenpellar™ for efficient operation as well as a Vortex Containment Plate to prevent re-entrainment of separated material. Required options are (ASME Code Stamp) All Coalescer/Separators shall be Eaton Type CLC, 31, 35 or 36.

Type DTL Gas/Liquid Separators

All gas/liquid separators shall be fabricated (carbon steel, stainless steel or other alloy) construction with flanged connections for pipe size____. Separators will remove 99% of all liquid or entrained particulate matter 10 micron in size or larger when properly installed. Separators to be specially designed to handle larger than normal solid loads and have a conical shaped sump to better collect solids. Separators shall have a Vortex Containment Plate to prevent re-entrainment of separated material. All separators shall be Eaton Type T-DTL, 33L-DTL, or 31L-DTL

Exhaust Heads

construction with (threaded or flanged) piping connections for pipe size____. Exhaust heads will remove 99% of all entrained liquid or

particulate matter 10 micron in size or larger when properly installed. All exhaust heads will be designed so that there will be no required maintenance and have a Vortex Containment Plate to prevent the re-entrainment of separated material. Exhaust heads shall be Eaton Type 40EHC or Type 40EHMF.

Float Drain Traps

All float drain traps shall be cast (iron or stainless steel) with stainless steel internal parts and threaded connections for pipe size Traps to require no priming

and all internal parts should be attached to and removable with the cover without disconnection the trap from the line. All traps shall have corrosion resistant stainless steel, nonmagnetic valves and seats. Traps to be Eaton Model 90AC, 95AC, 230AC or 350AC.

Type 60-I and 70-I Internal Separators

All gas/liquid separators shall be of the internal design type and fabricated of (carbon steel, stainless steel or other alloy) with Type 304L stain-less steel blades. Separators shall remove 99% of all entrained liquid or particulate matter 10 micron in size or larger when properly installed. Separators shall have an (upflow, down-flow) design configuration. Separators to be Eaton Type 60-I or 70-I.

